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Unsteady #ow about solid and perforated cylinders at large Stokes numbers and very small
Keulegan}Carpenter numbers has not been su$ciently understood to predict the hydroelastic
response of compliant structures subjected to high frequency excitation. It is impossible to
compute, di$cult to quantify, and extremely di$cult to visualize. Here, following a brief review
of the previous research, new results for both forced and pluck-induced oscillations are
presented. It is shown that: (a) the measured drag coe$cients are larger (about double for
smooth cylinders) than those predicted from the Stokes}Wang analysis (in the region of its
applicability); (b) there is an unstable #ow regime in which the oscillatory boundary layer
develops quasicoherent structures (QCS) over a range of K values before giving rise to
Honji-type coherent structures (HTCS); (c) the drag coe$cients for perforated cylinders are
much larger than those for solid cylinders and do not follow the Stokes}Wang prediction even
at small b. As expected, their inertia coe$cients are considerably smaller than those for solid
cylinders. ( 2001 Academic Press
1. INTRODUCTION

HYDRODYNAMIC DAMPING is of considerable importance for structures undergoing dynamic
excitation in the range of parameter space de"ned by very small Keulegan}Carpenter
numbers (K"2nA/D) and very large Stokes numbers (b"Re/K"fD2/l), where
Re";

.!9
D/l, D is the diameter of the cylinder, and A and ;

.!9
are the amplitudes of the

displacement and velocity of the sinusoidal oscillations of frequency f, in a viscous #uid of
kinematic viscosity l. The reason for this is that typical K values for the Tension Leg
Platforms are in the range of 0)005}0)02 and the large values of b mean large rates of
vorticity di!usion, dictated by the prevailing instabilities (QCS and HTCS) to be discussed
later.

Stokes' (1851) classical solutions formed the basis of many empirical and numerical
models where the oscillations are presumed to be small enough to allow convective
accelerations to be ignored. Stokes' solution for a circular cylinder, later extended to higher
terms by Wang (1968), may be decomposed into in-phase and out-of-phase components as
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which shows the dependence of C
d
and C

a
on b and the fact that
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in the limit as KP0 and bPR. For example, for KC
d
"0)04 one has C

a
"1)00344.

However, for C
a
"1)000344, C

d
is 10 times smaller than that for the same K with

KC
d
"0)04.

For su$ciently large values of b, equation (1b) may be approximated to

MKC
d
JbN

S~W
"26)24, (3)

which shows that both d(KC
d
)/db and KC

d
approach zero asymptotically as b increases.

However, the experiments reported herein show that KC
d

approaches about 0)04 for the
largest b values encountered.

The foregoing equations are valid only for sinusoidally oscillating, unseparated, stable,
laminar #ow about a smooth cylinder. Hall (1984) carried out a stability analysis of the
unsteady attached boundary layer on a cylinder oscillating transversely in a viscous #uid in
both linear and weakly nonlinear regimes. In order to simplify the problem, Hall further
assumed that the oscillation frequency is large. This led to the critical Keulegan}Carpenter
number given by

K
#3
"5)78b~1@4 (1#0)21b~1@4#2). (4)

Equation (4) was entirely consistent with the experiments of Honji (1981) within the range
of comparison (70(b(700). The fairly regular, mushroom-shaped instabilities observed
by Honji, in a small range of b values, were previously named the &&Honji instability''
(Sarpkaya, 1986). They will now be renamed more precisely as the &&Honji-type coherent
structures, HTCS'' in preparation for the discussion of irregular or &&quasicoherent struc-
ture, QCS'' occurring in oscillating boundary layers over a large but "nite region of
K values smaller than K

#3
. The structures in the region K'K

#3
will be discussed later. It

remains to be seen whether the QCS are responsible for the deviation of the measured drag
coe$cients from the Stokes}Wang prediction.

2. PREVIOUS INVESTIGATIONS

Considerable experimental work has been carried out in recent years on the hydrodynamic
damping of circular cylinders in oscillatory #ow: Sarpkaya (1986), in the range of
1035(b(11 240; Otter (1990) for b"61 400; Troesch & Kim (1991), for b"23 200 and
48 600; Bearman & Mackwood (1992), in the range 14 371(b(30 163; Bearman &
Russell (1996), for b"60 000; Chaplin & Subbiah (1998), for b(166900; Chaplin (2000),
for b"670 000 and 1 277 000; and Sarpkaya (2000), for b"748 000 and 1 365 000 for
smooth, sand-roughened (k/D"1/100) and porous (30% porosity) pipes. These are shown
in Tables 1(a)}1(c) together with some of the more important characteristics of the experi-
ments. In these tables, the published KC

d
b1@2 values are discussed through the use of

a parameter K
K

de"ned as

K
K
"[MKC

d
JbN

E91
/MKC

d
JbN

S~W
]
K
, (5)

where (KC
d
b1@2)

S~W
+26)24 is the classical laminar #ow solution of Stokes and Wang. It

should be noted that K
K

is meaningful only at very small K values. Every attempt has been
made to choose the smallest K at each investigation. The data for small K may be
represented either by multiplying the constant 26)24 by K

K
or by multiplying l in b by (K

K
)2.

In the latter case, (K
K
)2 transforms the kinematic viscosity to a virtual or eddy kinematic

viscosity (à la Boussinesq). The relative roughness of the surface of the cylinder is given by
k/D. Other parameters of interest, not shown in these abridged tables, are

KC
d
"26)24b~1@2, (6)



TABLE 1(a)
Values of the various experimental parameters for the data obtained by the references noted

(1986}1991)

References K l
t
/l"K2

b
fD2/l K

#3
k/D

Exper.
system

Sarpkaya (1986) Before
Honji inst.
K

0>4
"1

1 1035 (0)62)
1)057

Smooth U-tunnel

Sarpkaya (1986) After
Honji inst.
K

0>4
"1)4

1)96 1035 (0)62)
1)057

Smooth U-tunnel

Sarpkaya (1986) K
0>5

"3)7 13)7 1800 0)916 1/100 U-tunnel
Sarpkaya (1986) K"?

K
.*/

not
small enough

11 240 0)56 Smooth U-tunnel

Otter (1990) 1 for K(K
#3

1 61 400 0)39 Smooth E-M shaker
Troesch & Kim
(1991)

K
0>1

"2
Before Honji inst.

4 23 200 0)47 Smooth Forced vib.
at resonance

Troesch & Kim
(1991)

K
0>1

"3)75
After Honji inst.

14 23 200 0)47 Smooth Forced vib.
at resonance

Troesch & Kim
(1991)

K
0>1

"4)45 19)8 48 000 0)39 Smooth Forced vib.
at resonance

TABLE 1(b)
Values of the various experimental parameters for the data obtained by the references noted (1992)

References K l
t
/ l"
K2

b
fD2/l K

#3
k/D

Exper.
system

Bearman &
Mackwood (1992)

K
0>1

1)23}1)26
1)56 14 371}

29 014
0)53}0)48 Smooth Plucked

pendulum
Bearman &
Mackwood (1992)

K
0>1

1)80}2)20
3)24}4
)84

13 800
21 000

0)53}0)50 1/100
1/50

Plucked
pendulum

Bearman &
Mackwood (1992)

K
0>1

"1)8 3)24 14 093 0)53 1/50 Plucked
pendulum

Bearman &
Mackwood (1992)

K
0>1

"2)65 7)0 27 313 0)45 1/100 Plucked
pendulum

Bearman &
Mackwood (1992)

K
0>1

"3)18 10)0 30 163 0)44 1/50 Plucked
pendulum
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the relative thickness of the Stokes layer,

d
S5
D

"2)82b~1@2, (7)

the oscillatory Reynolds number Red de"ned by

Red";.!9

d
S5
l
"2)82Reb~1@2, (8)

and the customary Reynolds number Re";
.!9

D/l, de"ned earlier.



TABLE 1(c)
Values of the various experimental parameters for the data obtained by the references noted

(1996}2000)

References K l
t
/l"K2

b
fD2/l K

#3
k/D

Exper.
system

Bearman &
Russell (1996)

K
0>1

"1)45 2)1 16 538 0)51 Smooth Plucked
pendulum

Bearman &
Russell (1996)

K
0>1

"1)92 3)7 20 526 0)48 Smooth Plucked
pendulum

Bearman &
Russell (1996)

K
0>1

"2)0 4 34 946 0)42 Smooth Plucked
pendulum

Bearman &
Russell (1996)

K
0>1

"1)87 3)7 61 022 0)37 Smooth Plucked
pendulum

Chaplin &
Subbiah (1998)

K
0>1

"2)2 4)8 166 900 0)29 Smooth Forced vib.
at resonance

Chaplin &
Subbiah (1998)

K
0>01

"3 9 166 900 0)29 1/1266 Forced vib.
at resonance

Chaplin (2000) K
0>001

"2
K

0>001
"2)04

4
4)16 670 000

1 277 000

0)20
0)17

Smooth
Smooth

Free decay
tests

Sarpkaya (2000) For both b
K

0>002
"2)2-for PL

2)4-for FV

For both
b
4)84
5)76

748 000
1 365 000

0)197
0)169

Both
smooth

Pluck and
forced vib.

Sarpkaya
(2000)

For both b
K

0>002
"2)2-for PL

2)4 for FV

For both
b
4)84
5)76

748 000
1 365 000

?
?

Both
rough
1/100

Pluck and
forced vib.
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The results summarized in Tables 1(a)}1(c) have shown that drag coe$cients are indeed
inversely proportional to K in the region of no vortex shedding, but the K

K
values exceed

unity by varying amounts, except those of Sarpkaya (1986) for b"1035 and 1380 and Otter
(1990) for b"61 400. The most recent free-decay tests of Chaplin (2000) have shown that
K

K
remains at about 2 even for b values larger than 106. Sarpkaya's (2000) data, "rst

reported at the IUTAM meeting in Marseille, yielded K
K

values somewhat larger than 2.
These will be discussed here in more detail later.

Some of the di!erences between the data summarized in Tables 1(a)}(c) may be attributed
to the methods of experimentation, the use of pluck or forced oscillations, the range of b,
methods of correction of the measured damping due to the structural and hydrodynamic
damping of the supporting elements, free-surface and wall-proximity e!ects, cylinder
surface roughness and aspect ratio, presence of air bubbles, etc. However, the consistency of
the near doubling of the K

K
at relatively large b can neither be denied nor explained away in

terms of errors in otherwise carefully conducted experiments. This required an extensive
investigation of the structure of the near-wall #ow.

3. EXPERIMENTS

The experiments were conducted in three di!erent facilities: a U-shaped water tunnel where
the #ow oscillated about cylinders at a constant frequency, in a rectangular basin where the
test cylinder was subjected to forced oscillations at desired frequencies, and in a large
reservoir where the horizontally mounted test cylinders were suspended between two



HYDRODYNAMIC DAMPING 913
(su$ciently large) end-plates of a vertical pendulum in a large reservoir. The system was so
designed that either pluck tests (free decay) or resonant-forced-vibration tests can be
performed at frequencies as large as 6)0 Hz (in water) in the range of K values from about
0)001 to 0)55. The data (displacements, accelerations, forces, and strains) were sampled at
a rate of 2500 Hz. A comprehensive uncertainty analysis (95% con"dence interval) has
shown that the uncertainty for the drag coe$cient was less than 4)8%.

The nominal size of the cylinders ranged from 10 to 50 cm. The largest cylinder had
a length-to-diameter ratio of 2. The smaller cylinders had larger ¸/D ratios. The most recent
experiments reported herein were performed with two sets of cylinders: 35)56 and 49)50 cm
smooth nonperforated cylinders and a 49)50 cm perforated cylinder (porosity"30%). The
solid cylinders were subsequently sand-roughened (k/D"1/100, where D is the bare
cylinder diameter here and elsewhere in this paper).

All pluck and forced-vibration experiments were repeated 3 times in air and 3 times in
water (with cylinder in place) for each and every amplitude of oscillation. Then the cylinder
was removed, and, as is customary [see, e.g., Bearman & Mackwood (1992)], all in air and in
water experiments were repeated after replacing the removed cylinder mass (and its added
mass) with equivalent weights (thin circular plates) attached to the sides of the modi"ed
end-plates (for area equivalency). The massive static and dynamic data from the linear-
variable displacement transducers, accelerometers, force transducers, and strain gages were
su$cient to determine the system sti!ness, added mass, and the net hydrodynamic damping
(here the logarithmic decrement) d, corrected for the hydrodynamic damping of the
submerged parts of the pendulum and the structural damping (the latter was indeed very
low). Then, the drag coe$cient was deduced from the well-known expression (Sarpkaya,
1978)

C
d
"3nmd/(2oD2K), (9a)

where C
d

is the drag coe$cient, m is the e!ective mass of the cylinder, and d is the
logarithmic decrement (+2nf, where f is the damping factor). Other parameters appearing
in equation (9a) have been de"ned previously. For large values of b, the combination of
equations (2) and (9a) yields

f"
1

2
(C

a
!1)

M
d

m
, (9b)

or

KC
d
"

3n3

4
f

m

M
d

, (9c)

where M
d
is the displaced mass of the cylinder per unit length. Equations (9a), (9c), and (6)

show, for example, for KC
d
"0)040 that fm/M

d
should not have an error larger than

$0)000172 (corresponding to a variation of about $86 000 in b) to remain accurate
within 10%. This, together with the example given in connection with equation (2), shows
the extreme di$culty of the determination of KC

d
for small values of K and large values

of b. The concerns expressed above are equally valid for the forced vibration experiments
also.

4. PRESENTATION OF DATA

4.1. SOLID CYLINDERS

Preliminary plots of the drag coe$cients as a function of K for the two solid cylinders
(b"748 000 and 1 365 000) have shown that there is no measurable di!erence between



Figure 1. Drag coe$cient versus Keulegan}Carpenter number for smooth solid cylinders at
b"1 365 000: s, pluck tests; d, forced oscillation; **, theory (Stokes}Wang).
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them. If anything, the di!erence is well within the scatter of the data. It is for this reason that
the drag coe$cients are presented herein only for b"1 365 000.

Figures 1 and 2 show the drag coe$cient C
d

and the parameter K
K

for pluck and
forced-vibration experiments for b"1 365 000. Several observations are rather obvious.
There is some scatter in the data, the scatter decreasing with increasing K; the scatter is
more apparent in Figure 2 and the mean lines through the data appear to have a small
upward slope with increasing K. At b"1 365 000 the drag coe$cient, and hence K

K
, is

larger than that predicted by the Stokes}Wang (unseparated stable laminar #ow) analysis in
both the pre-Honji (K

#3
(0)169) and post-Honji regimes, and that the forced-vibration tests

yield somewhat larger C
d
and K

K
values. The average K

K
values shown in Figure 2 are about

2)2 and 2)4 for the pluck and forced-vibration tests, respectively.
Figures 3 and 4 show C

d
and K

K
for the rough cylinder (k/D"1/100) for b"1 365 000.

Their characteristics are similar to those shown in Figures 1 and 2 except that the e!ect of
roughness increases K

K
from 2)2 (for the smooth cylinder) to 3)2 for the rough cylinder.

Forced vibration of the rough cylinders (not shown here) yielded an average K
K

value of
about 3)4, with equally large scatter. As will be ampli"ed later, the scatter of the data is not
entirely due to the shortcomings of the equipment and data evaluation. Some of the reasons
are buried in the interstices of the roughness elements and the interaction between the
roughness elements and the quasicoherent structures.

4.2. PERFORATED CYLINDERS

A perforated body is a rigid hollow shell whose surface is pierced by a distribution of small
apertures which allow the near-free passage of #uid. The essential characteristics of #ow
through a perforated surface depend on the Reynolds number and Strouhal number based



Figure 2. K
K

versus Keulegan}Carpenter number for smooth solid cylinders at b"1 365 000: s,
pluck tests; d, forced oscillation; **, theory (Stokes}Wang).
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on the characteristic aperture diameter, on the relative spacing of the perforations, angle of
the aperture to the incident #ow, the ratio of the total open area to the total surface area of
the body, whether or not the incident #ow is laminar or turbulent, and on the Reynolds and
Keulegan}Carpenter numbers of the cylindrical body.

The e!ect of #ow unsteadiness in general and the added mass in particular has not been
subjected to extensive theoretical, numerical, and experimental work. The existing works
[e.g., Howe (1979), Molin (1992)] dealt with highly specialized cases and include the e!ect of
perforations rather indirectly. The unsteady #ow results show (Howe 1979) that perfor-
ations have a profound e!ect on the added mass and damping of the body. At very small
amplitudes of oscillation or unidirectional surging, perforations reduce the added mass
signi"cantly since the body becomes transparent to the #uid motion. For porosities below
about 30%, the added mass increases rapidly. Equally important is the fact that added mass
also increases rapidly with increasing amplitude of oscillation for a given frequency and
porosity.

Figure 5 shows the drag coe$cient for the perforated cylinder (porosity"30%, hole
size"1)168 mm, center-to-center spacing"1)984 mm, and b"1 365 000), together with
that for the solid cylinder. The perforations considerably increase the drag (and hence the
damping). The drag data were not expected to fall on a line parallel to the Stokes}Wang line
for many reasons, the primary one being the fact that near the wall the #ow is very complex
and part of the #ow goes through the cylinder and part around the cylinder. This is also the
reason for the relatively small added-mass coe$cient shown in Figure 6. The mean line
through the perforated cylinder data in Figure 5 may be represented by KC1>3

d
"0)21. The

corresponding expression for the smooth solid cylinder is KC
d
"0)05. It is evident that

perforated cylinders, alone or in conjunction with a coaxial pipe or cable, can provide very
large damping without increasing the added mass.



Figure 3. Drag coe$cient versus Keulegan}Carpenter number for rough solid cylinders
(k/D"1/100) at b"1 365 000: s, pluck tests; **, theory (Stokes}Wang).
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4.3. OBSERVATIONS OF INSTABILITIES

The low-speed streaks and quasicoherent vortical structures are now considered to be
ubiquitous features of a turbulent boundary layer near a solid wall, even though their origin
still remains unresolved in both steady and periodic #ows (Sarpkaya, 1993). Incisive as well
as eloquent reviews of the state of the art, deduced from 40 years of experimentation and 10
years of numerical simulation of low-Reynolds-number canonical #ows, have been given by
Robinson & Kline (1990), Smith et al. (1991), and Robinson (1991). The studies on the
instability of external oscillatory #ows on curved walls are relatively new and dealt mostly
with periodic sand ripples [see, e.g., Hara & Mei, (1990a,b), Scandura et al. (2000), and the
references cited therein]. For understandable reasons, these studies dealt with relatively
small Reynolds numbers and proved once again that the simulation of more realistic
three-dimensional #ows is beyond the present computing power. As noted earlier, Honji
(1981) visualized the #ow around a transversely oscillating cylinder in a #uid otherwise at
rest and observed regularly spaced mushroom-shaped vortices along the two lines where
the local ambient velocity is maximum. Subsequently, Sarpkaya (1986) named them &&the
Honji instability'' and extended the range of observations to higher b values (about 5500).
The use of direct numerical simulation at b values of interest here is not yet feasible. In fact,
the only e!ort (to the best of our knowledge) to simulate the Honji instability was carried
out by Zhang & Dalton (1999) at b"196 using the primitive-variables form of the
Navier}Stokes equations.

The present instability studies were conducted with forced oscillations of two cylinders
(D"35)56 and D"49)50 cm, smooth and subsequently sand-roughened, k/D"1/100).
The reason for this is primarily the fact that the larger the cylinder the longer is the time (the



Figure 4. K
K

versus Keulegan}Carpenter number for rough solid cylinders (k/D"1/100) at
b"1 365 000: s, pluck tests; **, theory (Stokes}Wang).
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number of cycles of oscillations) for the establishment of the Honji instability. Cylinders
subjected to pluck tests did not always accord the opportunity for su$ciently long
observations and recording. The rapidly decaying transient motions have transformed them
into irregular vortical forms. This di!erence may partly account for the di!erence in the
drag coe$cients obtained from the pluck and forced-oscillation tests.

Flow visualization experiments were conducted using, with few minor exceptions, almost
exactly the same instruments and procedures described in Sarpkaya (1986) and will not be
repeated here. Water in the test tanks was circulated through a deaeration system prior to
the experiments after it was discovered that the presence of small air bubbles and the
attachment of some of them to the cylinder surface could interfere with or alter the
character of the coherent or quasicoherent structures. The thickness of the dye layer,
determined from the dye volume introduced and the area it spread on the cylinder was
about 0)4 mm [25% of d

S5
, given by equation (7)].

Each experiment began at a point de"ned by (b, K) in Figure 7. The thinner line, labeled
H, after Hall (1984), represents equation (4). Each K on the Hall line corresponds to
a critical K

#3
at which the Honji instability occurs. The meaning of the cross-hatched line

will emerge in the course of the following descriptions.
Experiments were carried out either by maintaining b constant (i.e., the frequency of

oscillation) and decreasing K from an initial value of K'K
#3

down to K values smaller
than K

#3
, or by maintaining K constant and increasing b. Each change in either K or b is

followed by a long rest and &&refueling'' (new dye introduction) period.
The cross-hatched line (marked S, denoting stability) in Figure 7 de"nes the approximate

boundary that separates the stable region on the left from the unstable region on the right.
It is the lower limit of the points de"ned by (b, K) where either no QCS are created



Figure 5. Drag coe$cient versus Keulegan}Carpenter number: s, pluck tests of smooth solid
cylinders at b"1 365 000 (see Figure 1); d, pluck tests of the porous cylinder (30% porosity) at

b"1 365 000; **, theory (Stokes}Wang).
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during the entire cycle or those created (mostly during the high velocity period) barely
survive the low velocity period. Part of the subjectivity, aside from human interpretation of
the de"nition of the life of a QCS, comes from the fact that there cannot be a single
line separating the stable region from the unstable region due to the statistical nature of
the intermittency of the structures. In fact, the di$culty of the determination of the stability
line cannot be adequately emphasized. It depends not only on the parameters that can be
controlled but also on those which are, for all intents and purposes, beyond the capacity of
the experimenter to control (e.g., temperature gradients, residual background turbulence,
very small air bubbles, higher order harmonics of the vibrations, nonlinear interaction of
various types of perturbations, etc.). Ironically enough, we are looking for the reasons as to
why the #ow does not become unstable at smaller K values in the region to the left of the
line S.

A serious attempt was made to de"ne a line K
l
to the left of which no QCS are observed at

any time during at least 20 cycles; to de"ne another line, called K
f

on which about half (as
judged by eye) of the QCS (created during the high velocity period) survived the low velocity
period (for about 20 cycles), and "nally, to de"ne a line K

g
on which the QCS existed at all

times, even though not at the same strength during both the low velocity and high velocity
periods. This e!ort turned out to be extremely complex and not deterministic enough in
view of the scatter in the data. It was eventually decided to reduce the boundary to a single
line S (the average stability line) as de"ned above. The region between the lines S and H is
where there always are QCS. The Hall line (or a very narrow region to the left and right of it)
is where the well-known HTCS appear. In the region to the right of H one encounters, with
increasing K, "rst HTCS, then QCS, and eventually, turbulence, separation and vortex
shedding.



Figure 6. Inertia coe$cient versus Keulegan-Carpenter number: d, pluck tests of the porous
cylinder (30% porosity) at b"1 365 000.
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Su$cient evidence exemplifying the various occurrences in each region in Figure 7 will
now be presented. The descriptions to follow are based on extensive video viewing and the
information extracted from it in terms of occurrence of various types of structures, mindful
of the fact that the vagaries of #ow visualization do not always provide correct insight into
the physics of the actual occurrences. Furthermore, one can only repeat the complaint
registered by practically all experimenters on this subject that still photographs (printed
from the digitized frames of the video) do not convey as much information as motion
pictures. Furthermore, it will be nearly impossible to provide photographic evidence of the
events described for each and every data point. This will amount to reproducing about
650 000 frames that were used in following descriptions. It is also understood that no single
realization at a given point in the b}K plane can ever exactly repeat itself. Thus, the "gures
should be regarded as examples of what might generally happen in the vicinity of a point in
the b}K plane.

As far as the structures on the Hall line are concerned, Figure 8 corresponds to the point
(1 365 000; 0)169). The characteristic features of the Honji instability (mushrooms) are
apparent. The average relative spacing (s/D) between them (over 20 cycles of observations,
beyond the initial period of establishment) is about 0)005. Some of the mushrooms
occasionally rise above the others and then continuously evolve during the acceleration and
deceleration periods even in a single cycle. Figure 9 shows another representative point
(748 000; 0)197) on H. The average relative spacing between the mushrooms, again based on
observations of more than 20 cycles, is about s/D"0)0065. Apparently, the instabilities at
high b (Figures 8 and 9) are not as regular as those at much lower b values (e.g., Sarpkaya
1986). Figure 10 shows at (74 800; 0)35) representative mushrooms recorded during part of
a single cycle (at 32 ms intervals) with an average s/D"0)025. Observations have shown
that the structures, regardless of the number of cycles, do not necessarily acquire the same



Figure 7. The b}K plane. Smooth cylinder: d, stable region (no #ow structures); s, unstable region;
**, the Hall line (Honji instability); the cross-hatched line (only for the smooth cylinder) separates
the stable region on the left from the unstable region on the right. Rough cylinder: n, quasicoherent

structures at all points of observation.

Figure 11. Enlarged views of two of the mushrooms shown in Figure 10. The occurrence of the
Helmholtz instability is clearly visible.
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size and shape at the same time. Some grow larger and others grow to the same size at
a later time. Figure 11 shows the magni"ed versions of two of the mushrooms shown in
Figure 10. It appears that the rollup of the vortex sheet is not smooth and Helmholtz
instability may develop in mature mushrooms. The four representative strips from visualiz-
ations at (44 000; 0)4) on H are shown in Figure 12. They are relatively more regular with an
average spacing of s/D"0)034.



Figure 8. Representative Honji-type coherent structures at b"1 365 000 and K"0)169.

Figure 9. Representative Honji-type coherent structures at b"748 000 and K"0)197.

Figure 10. Representative Honji-type coherent structures at b"74 800 and K"0)35.
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Figure 12. Representative Honji-type coherent structures at b"44 000 and K"0)40.

Figure 13. Representative quasicoherent structures at b"1 365 000 and K"0)30 ("1)8K
#3

).

Figure 14. Representative quasicoherent structures at b"120 000 and K"0)42 ("1)36K
#3

).
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Figure 15. Representative Honji-type and quasicoherent structures at b"1 365 000 and K"0)10
("0)59K

#3
).

Figure 16. Representative quasicoherent structures at b"1 365 000 and K"0)052 ("0)31K
#3
).

Figure 17. Representative quasicoherent structures at b"1 365 000 and K"0)04 ("0)24K
#3

).
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Now, evidence of the existence of QCS in the regions "rst to the right and then to the left
of the Hall line will be presented. Figure 13 corresponds to the point (1 365 000; 0)3) where
K+1)8 K

#3
. During a given cycle the structures exhibit highly complex forms. Ejections of

the #uid from the boundary are quite clear, and the structures resemble more the QCS
observed in oscillatory #ow on plane boundaries [see, e.g., Sarpkaya (1993)]. Figure 14
shows several examples of the behavior of #ow at (120 000; 0)42) where K"1)36 K

#3
. It

appears that at lower b values the HTCS persist even at K'K
#3

but, eventually, they too
transform into QCS if K is su$ciently increased. Larger increases in K lead to increased
turbulence, separation and vortex shedding and will not be discussed herein further.

Representative structures in the region where K(K
#3

will now be presented. Figure 15
shows structures at (1 365 00; 0)1) that appear to be a combination of QCS and occasional
HTCS. These structures have continuously evolved during the many cycles of oscillations.
Figure 16 shows at (1 365 00; 0)052) the structures that barely survive the low velocity
period. In fact, with further decrease of K or b, an occasional burst occurs during the high
velocity period and disappears during the low velocity period as shown in Figure 17 for
(1 365 00; 0)04). Figures 18 and 19 at (300 000; 0)10) and (260 000; 0)065) show, respectively,



Figure 18. Representative quasicoherent structures that barely survive the acceleration period;
b"300 000 and K"0)10 ("0)4K

#3
).

Figure 19. Representative quasicoherent structures that appear only during the deceleration
period; b"260 000 and K"0)065 ("0)25K

#3
).

922 T. SARPKAYA
structures that barely survive the low velocity period and those that appear only during the
high velocity period. Figure 20 shows at (147 000; 0)20) the type of QCS that are very similar
to those obtained in oscillatory boundary layers. At (50 000; 0)2), the QCS reduce to those
shown in Figure 21 and then disappear as b is reduced to about 20 000. Figures 22 and 23 at
(72 000; 0)24), and at (45 000; 0)24), respectively, show additional examples of QCS.

4.4. QUANTIFICATION OF THE STABILITY LINE

Previous studies of the QCS (Sarpkaya 1993) in oscillatory boundary layers have shown
that the transition to turbulence in oscillatory Stokes #ow is a gradual quasi-deterministic
process. It has a beginning (when it is large enough to be seen), a reasonably clear
intermediate step (when it exhibits a dramatic change in one or more measurable para-
meters), and no discernible end. For Red (&2)82 ;

.!9
d/l)+1100, one or more unevenly

spaced low-speed streaks emerge toward the end of the high velocity phase and then



Figure 20. Representative quasicoherent structures that are very similar to those found in oscilla-
tory plane boundary layers; b"147 000 and K"0)20 ("0)68K

#3
).

Figure 21. Smaller and weaker quasicoherent structures at b"50 000 and K"0)20 ("0)52K
#3

).
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completely disappear during the low velocity phase, without ever giving rise to any coherent
structures. In the range of Red+1100}1300 the vortical structures begin to emerge and
continue to increase in number, over larger time intervals. The next major change occurs in
the narrow interval of Red values from about 2200 to 2500 in which the phase angle (the
phase lead of the maximum shear stress over the maximum velocity) decreases sharply from
about 343 to about 133 and the friction coe$cient increases rapidly and reaches a local
maximum at about Red+2800. At these Reynolds numbers, turbulence is essentially the
vestiges of more energetic structures which come into existence by violent bursting during
the high velocity phase, as evidenced by extensive viewing of videotapes.

For the circular cylinder, from equation (8) and Re"Kb, one has

Red"2)82Reb~1@2"2)82 Kb1@2. (10)

Thus, it is natural to assume that there is a critical value of Red and that equation (10) may
be expressed as Kb1@2"C, where the constant C is to be determined from the experiments.
If the Red values for the #at plate and circular cylinder cases were identical, one would
expect a C value of about 200 for the inception of coherent structures near the crown of the
cylinder. The comparison of Kb1@2"200 with the data has shown that C is too large and
that the functional relationship is not in conformity with the slope of the stability line shown
in Figure 7. This was not entirely unexpected on several grounds. In the plate #ow, the
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instability is not a!ected by the surface curvature or the centrifugal instability. In the case of
the cylinder, it is the Taylor}GoK rtler instability that leads to the Hall line. In fact, as
a "rst-order approximation to equation (4), Kb1@4"5)78 represents the fact that an
instability of centrifugal type can occur when the Taylor number (T"A2/Dd

S5
/Kb1@4)

exceeds a certain threshold, as noted by Hara & Mei (1990a). Thus, we expect that in the
regions in either side of the Hall line the stability of the #ow will continue to be a!ected by
the surface curvature while undergoing instabilities of the boundary-layer type. The equa-
tion that best represents the S line is given by

Kb2@5"12)5, (11)

which re#ects the strong in#uence of the boundary-layer type instabilities and to a lesser
extent that of the Taylor instability. Also, it is interesting to note that in a Kb2@n type
relationship, n"4 for the #at plate, n"5 for the circular cylinders, and n"8 for the
Honji-type instability. The Reynolds number along the stability line increases as
Re"12)5b3@5, while for b"200, Re"300; and b"106, Re rises to about 50 000.

It was hoped that the instabilities will manifest themselves at K values as small as 0)0005
and b values as large as or larger than 106. The fact that this did not turn out to be the case
was rather disappointing. It was noted earlier that the appearance of coherent structures in
oscillatory #ow over plane walls leads to an almost sudden and substantial increase in the
skin-friction coe$cient [Sarpkaya (1993) and the data shown in the references cited
therein]. Should this have been the case for the K and b values shown in Figures 1 and 2, it
would have provided some justi"cation for the measured increase (almost doubling) of the
drag coe$cient relative to that predicted by the Stokes}Wang analysis. The use of equation
(11) shows that only for K larger than about 0)044 (for b"1 365 000) and 0.056 (for
b"748 000) one should expect a signi"cant increase in the drag coe$cient and that for
smaller K values the experiments should follow the Stokes}Wang line. This simply is not
the case and the reasons are perplexing. One may assume that (a) there are other instabilities
in other regions of the cylinder (note that we have looked only at the crown of the cylinder),
(b) the instabilities become observable only when they reach a certain amplitude, not at the
beginning of the laminar instability, (c) the nonlinear interactions of various types of
perturbations may signi"cantly alter the characteristics of the Stokes layer so as to increase
the shear and hence the drag coe$cient, and (d) the direct measurement of the drag
coe$cient at very low K values may simply not be reliable or su$ciently accurate. This is in
spite of the fact that independent measurements (see Table 1, last entries) tend to agree with
each other. It appears that it would be very desirable to simulate the rates of growth and
propagation of unstable laminar wave packets on curved surfaces in reversing as well as
nonreversing oscillatory boundary layers.

4.5. FLOW STRUCTURES ON ROUGH CYLINDERS

The profound e!ect of roughness on the drag and inertia coe$cients of circular cylinders in
sinusoidally oscillating #ow has been known for about 25 years (Sarpkaya, 1976, 1977, 1978,
1987, 1990a,b). However, its relation to the Honji instability, particularly at high b values
has not been explored. Experiments at smaller b values are cited in Table 1. The present
experiments with two large cylinders (k/D"1/100) have shown that #ow separates from the
sand grains at all K and b values (Figure 24). No stable region was found in the range of
b values from about 104 to 1)3]106 and K values from 0)0052 to 0)60. This does not
preclude the possibility of a stable region at lower K values.

As to the Honji instability, Figure 25, corresponding to (1 365 000; 0)169), showed
mushroom-like structures but they were more like real mushrooms (axisymmetric) rather



Figure 22. Additional examples of quasicoherent structures at b"72 000 and K"0)24
("0)68K

#3
).

Figure 23. Additional examples of quasicoherent structures at b"45 000 and K"0)24
("0)60K

#3
).
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Figure 25. Representative Honji-type or quasicoherent structures on a roughened cylinder;
b"1 365 000 and K"0)169 (on the Hall-line).
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Figure 24. Close-up view of the #ow separation from roughness elements on a sand-roughened
cylinder.
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than two-dimensional (meaning like their cross-section in a radial plane through the crown
of the cylinder). They were continuously agitated as if they were boiling. The motion was
often violent and the dye erupted into great heights (relative to the sand/gravel particles).
There was no Honji instability in the usual sense either at this b, K point or at any other
point on or o! the line H. Figure 26 shows the variation of the near-wall structures during
a single cycle at (147 000; 0)20). Figures 20 and 26 may be compared since they are obtained
at the same b, K. These observations con"rm the long-known fact that the energy
dissipation on rough surfaces will be considerably larger than that for the smooth surfaces.
This fact is particularly accentuated in oscillatory #ow about cylinders. It remains to be seen
as to how small k/D should be in order for the e!ect of roughness to be negligible at large
b and very small K values.

4.6. COMMENTS ON PREVIOUS EXPERIMENTS

In the light of the above, brief comments will be made regarding the previous work.
Sarpkaya (1986), using a smoothly oscillating sinusoidal #ow about a polished cylinder,
found that the onset of the Honji instability spans over the interval K"0)6}0)82 for
b"1035. This is close to K

s
"0)78 at b"1035, where K

s
is the value of K on S line for

a given b. Similarly, for b"1380, (K
s
"0)69), experiments exhibited a region of hysteresis

as K was increased in small steps from 0)4 to about 1. Surprisingly enough, K
s
"0)69

corresponds to the maximum of the "rst rise in C
d

above the Stokes}Wang line [see
Figure 2 in Sarpkaya (1986)]. Furthermore, the nature of the instability due to its sensitivity
to disturbances is such that the occurrence of a region of hysteresis is not entirely
unexpected. As another example of the previous work, Bearman & Russell (1996), experi-
menting with pluck-type decaying oscillations of smooth cylinders [see Table 1(c)] with
b"16 538 (K

s
"0)26), b"20 526 (K

s
"0)24), b"34 946 (K

s
"0)19), and b"61 022

(K
s
"0)15) found that the C

d
data exhibited some scatter for K values between 0)1 (their

lowest K value) and about 0)25, 0)30, 0)22, and 0)15, respectively. The comparison of these
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approximate K values with the corresponding K
s
values suggests that the data (obtained

with a cylinder subjected to pluck tests) in the region to the left of the S-line might exhibit
some scatter, with some data points falling closer to the Stokes}Wang line. Otter (1990)
concluded that for b"61 400 (K

s
"0)15), damping forces agree quite well with Stokes'

solution for K(1)88. This seems to be rather surprising because the #ow should have been
unstable for K'0)15, according to our present results, and should have been subjected to
Honji instability near K

#3
"0)39, according to Hall's analysis. The complex question of the

di!erences between the stability lines of forced oscillation tests (at a constant amplitude and
frequency) and pluck tests (with decaying amplitudes at nearly constant frequencies) is of
considerable practical importance, but will not be discussed here further.

5. CONCLUDING REMARKS

An e!ort was made to measure the drag of circular cylinders (smooth, rough, perforated)
subjected to sinusoidally oscillating motion, particularly at large values of b, to gain some
insight into the magnitude of their damping and, in particular, into the reasons for the
deviation of the measured values from the Stokes}Wang stable laminar #ow solution. The
second and probably the most important part of this e!ort yielded results signi"cantly
di!erent from expectations. For smooth cylinders, the results have shown that there is
a stable region in which no discernible #ow structures exist near the crown of the cylinder.
Then there is an unstable region where many forms of quasicoherent structures occur (for
b larger than about 100). On the Hall line, these structures take the form of Honji instability
even at the highest b encountered in these experiments. To the right of the Hall line, instabi-
lity takes many forms and, with increasing K, falls under the in#uence of separation and all
of its attendant consequences. Beyond a second threshold the #ow becomes turbulent.

The existence of a region between the stability line S and the Hall line H can only partly
explain the measured increase in the drag coe$cient relative to the Stokes}Wang analysis.
However, there remains a large range of K values (say between 0)0003 and the stability line)
in which there is no observable instability. Even though this does not preclude the existence
of evolving instabilities, it is hard to imagine that they would be large enough to nearly
double the drag coe$cient. Obviously, there is a need to answer this question and it will
require some ingenious and di$cult experiments. The use of direct numerical simulation at
b values of interest here is not yet feasible. However, the tracking and quanti"cation of
similar coherent and quasicoherent structures in experimental and simulated #ows, at any
point in the K}b plane, through the use of, for example, the discriminant of the characteristic
equation of the velocity gradient tensor, might help to understand not only the relationships
between damping, roughness, and porosity, but also the evolution of turbulence itself.
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